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The motion of one evading point E and n pursuing points in an 7 -dim- 

ed0I-d space is analyzed. The points’ velocities change instantaneously 

and are selected from convex compacta; it is assumed that the set of veloci- 
ties admissible to point E is wider than that of each of the pursuing pOin& 
The nominal motion of point E , i.e., the motion in the absence of pursu- 
ers, is a sliding along a specified ray with maximum speed. A piecewise- 
program control of point E has been constructed, possessing the following 

property: by staying within a specified neighborhood of the nominal motion, 
E avoids an explicit contact with all pursuers on an infinite time interval. 

A lower estimate is given for the maximum distance of point E from all 
pursuing points. The paper is closely related to [I]. The problem of evad- 
ing many pursuers was analyzed in [2--51 as well. 

1. We consider the motion of one evading point E and n pursuing points P,, 
. . .) P, in an r -dimensional space (r > 2) 

Xi’ = Ui, ui E ui, i = 1, . . .,n; y’ = u, VEV (1.1) 

Here y, q, . . . , z, are the r -dimensional phase vectors of points E, P,, . . . , 
P ?a; V, u,, . . . , (_J, are convex compacta. We assume the fulfilment of the im- 
beddings 

Ui C_ int V, i = 1, . . .,n (1.2) 

where int V denotes the interior of V . The points Pi use arbitrary piecewise- 
continuous controls with values in Ui, i = 1, . . .,n. At instant t player E 
has available information on the positions of points E, P,, . . . , P, on the interval 

[O, tl and on the basis of this inform&ion forms his own control at this same instant. 
The formation of a control v, vE V, such that the realization V (t) is a piecewise- 

continuous function, is called the strategy of player E . A vector vo, uo E av, 
where dV is the boundary of V , is specified such that the infinite interval 000, 
0 > 1, does not contain the points of V and 0~0 E int V for some values of 8, 

8 E to, 11. At the initial instant t = 0 point E occupies position E. , not 

coinciding with any one of the points P,, . . ., P,,. The motion of point E from 
position E. with velocity v. is said to be nominal. 

p r o b 1 e m. Given a number eo, &o > 0. Construct a strategy of player E 
such that for any admissible controls of the pursuers the point E is found at each in- 
stant t > 0 at a positive distance from all the PI, . . .,P,, while remaining with- 

in the e, -neighborhood of the nominal motion. Estimate as well the minimum 

492 



On a problem of evading many pursuers 493 

distance 6s from &’ to the points P,, . _ .,p, for t > 0. 
A similar problem was first examined by Chemous’ko Cl] for the case when V 

and ut are spheres with center at the origin, where U1 C V, i = 1, . . .,n. 

2. without loss of generality we can take it that V does not lie in any hyperplane 
(otherwise, the problem admits of a lowering of dimension). Hence from (1.2) it foll- 
ows that a convex polytope Q of full dirn~o~~~ can be found such that Ui C Q 
CintV, i=l,. . .,a Following [S], we shall reckon that the faces and the supp- 
ort hyperplanes of the polytopes are parallel only when their outward normals are para- 
llel. 

D e f i n i t i o n 1. A convex polytope is said to be Q -shaped if each face of 
it corresponds to a parallel face of Q and vice versa, 

D e f i n i t i o n 2. A Q -shaped polytope circumscribed around a sphere of 
radius 6 with center at some point A is called the Qa -neighborhood Qa (A) of 
point A . The union of the Q6 -neighborhoods of the points of a set D is called 
its Q6 -neighborhood Q* (D) . 

We note that for a Q-shaped polytope, a Q -shaped polytope serves as well as 
its Q&-neighborhood, where the distance between the faces equals 6. An a > 0 
can be found such that Ui C Q C QE (Q) C V. If we can solve the problem with 

Ui replaced by Q, i = 1 , . ..,n, and V by Qe (Q) , then by the same token 
the original problem is solved. Therefore, we subsequently take 

cii = Q, i = 1, . . .,n; V = Q~~Q), E > 0 

D e f i n i t i o n 3. Let Di be Q -shaped polytopes, i = 1,. . .,k. The 
minimum Q -shaped polytope D containing the D i is called their Q -union and 
is denoted D = [Dl, . , .,Dk]. 

We consider a point 2 of the r -dimensional space, whose motion is described 
by the equation 

x’ = U, u=Q 
By Gt (x (0)) we denote the attainability domain of 2 from position z (0) in time 
t. Let D be some Q -shaped polytope. 

Gt (D) = tU_ Gt (x (0)) 

is called the a~a~abi~ty domain of D 1. Gt (D) is a Q -shaped polytope. At 
the instant t = 0 let there be specified a ray L with directional vector uO , hav- 
ing points in common with D , and a point y (0), y (0) E dD. We say that from 
the position y (0), E has a maneuver for escaping from D if a program admissible 
control u (1) exists such that the corresponding solution y (t) of Eq. (1.1) is found 
for all t > 0 outside the interior of the attainability domain of D and, beginning 
from some instant t,, y (t) G L. L e us indicate the control Y ~rmitting the ex- t 
ecution of the escape maneuver. We discuss the case r = 2 in detail and outline 
the course of the reasoning for arbitrary r. 

we draw the vector u. from point zero. The sides of Q and the sides of Gt 
(L)) , parallel to them, such that the support lines drawn through them separate poly- 
tope Q and the endpoint of vector vg , are called marked sides. At least one 
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marked side always exists, viz., that which the vector us intersects when leaving Q. 
To it we assign the number zero. If vector ua passes through a vertex of Q , then 

any one of the sides meeting at this vertex can be taken as the zero side. The segment 
L fl Gt (D) has two boundary points. By the point of intersection we shall mean that 
one of them having the larger coordinate along ray L . Beginning with some inst- 

ant the point of intersection is located on the zero side of Gt @I). If player E 
fell into the point of intersection of L with a marked side, then, by moving along L, 
it can stay outside Gt (D). For this it is sufficient to set v (t) EE u(). 

_jt 3 + 
Ii 

u(t) 
4 

Fig. 2 

Fig. 1 

Let us fix on the direction of positive rotation, Then the half-planes upper and 

lower with respect to & are defined in a natural manner. It can be shown that the 

marked sides form a continuous polygonal line and that of the two vertices bounding 
it one (A,) moves upward and the other (A_) downward. If at the initial instant 

the ~lygonal line marked on D does not have points in common with L , then we 
choose a positive direction such that it is found in the lower halfplane (see Fig. 1). Let 

us number the sides of Q, counting from the zero in the positive direction. From 

the point zero to the vertices of Q we draw the vectors li, i = 1, . . .,m, wnere 

m is the number of sides of 0. We number them in successionin the positive dir- 

ection in such a way that the zero side is included between 1, and I, . We rel- 

ate the i -tb vertex to the i -th side if i + m; we relate the m -th vertex to the 

zero side. The following piece-wise-constant control is proposed for player I?? . If E 
is located on the i -th side of Gt (D), we set (see Fig. 2) 

(2.1) 

Under such a choice of control the point E moves along the i - th side of Gt (D), 

approaching the (i f 1) st vertex of Gt (D) with velocity e , consequently ,~~~r 
a finite time E falls into the (i + 1) st vertex and, by the same token, onto 
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(i + 1) st side. The control v is varied in accord with (2. l), and E slides along 
the (i 3_ 1) st side of Gt (D), approaching the (i + 2) nd vertex, and so on,until 
one of two events OCCUIS: either E falls into the point of intersection of L with a 
marked side or it falls into vertex A+ before A+ intersects L . J.n the first case we 
set u (t) = vo. III the second, E remains at vertex A+ until A+ hits onto L 

(i.e., vector v equals the corresponding Zi ), after which v (t) = vo. We note 
that under such a choice of control E can intersect L several times. 

Let us estimate t, . Let Q and d be the longest sides of Q and D , respectiv- 
ely. We denote t*” as the time spent in traversing k sides of Gt (D) during the 
escape maneuver. Then 

t,l < &-ld (2.2) 

tei < ti-l + c-l (d + qt,‘-l), i = 2,3, . . .,m 

Taking into account that t, < t*m, from the recurrence relations (2.2) we find that 

t, < [(I + QE-l)“’ - lldq-l. Thus, we have established that a number co can 
be found such that for any Q -shaped polytope D with largest side no larger than d 

and for any initial position E (0) E ~70 the estimate 

t, < cod, co = [(I + qe-l)‘)’ - llq-l 
(2.3) 

is valid for the time t, of the escape maneuver before going onto L. Similarly, 

a number c, can be found such that 

diam (D) < c,d (2.4) 

for every Q-shaped D with largest side no larger than d . As c2 we can take 
the integer part of (m / 2). If D is circumscribed around a circle of radius 6 , then 

a number ci can be found such that 

d\(c,6, cl = 2ctg(/3/2) (2.5) 
where fi is the smallest angle at a vertex of Q . In this case 

cod < coc16 or t, < ~6, where c = cocl 
We now consider the case r > 2. The concepts of the zero and the marked 

sides generalize in a natural way to the case of arbitrary r. It can be shown that 
the marked faces form a simply-connected set. Beginning with some instant the point 
of intersection of L with Gt (D) lies on a marked face and, next, on the zero 

face. constructing a control of type (2. l), E can fall into any point of that face 
of Gt (D) on which it is located. At the instant of going onto the boundary of this 

face a switching takes place, etc. After a finite time t, player E falls into a po- 
int of intersection of L with a marked face, after which v E vo. Inequalities(2.3) 
-(2.5) remain valid in the general case, if by q and d we mean the longest diamet- 

ers of the faces of Q and D , respectively. 

N o t e. Let two Q-shaped polytopes D and D, be specified, where each of 
them has points not belonging to the other. We consider Dz (t) = [GO), Gt WI. 
At the initial instant let E E aD and let the goal of player E be to fall onto aD, 
(t) while remaining outside G@). He can do this by using the maneuver of escap- 
ing from D. Indeed, by applying the escape maneuver, E has the capability of 
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falling onto any face of Gf (D). But aDe (t) of necessity contains certain faces of 
Gl (D). The time of going onto aD (t) does not exceed c,,d. 

All the subsequent exposition is applicable for arbitrary r, ,- > 2. 

3. Let a decreasing sequence A : {a,}, lim ai = 0, i -+ CO, be specified, 
all elements of which are positive. The instant that E first falls into the Qaj -neigh- 
borhood of a certain pursuer is called the instant of i -th encounter with this pursuer 

( the method for selecting A is discussed in Sect. 4). We number the pursuers as 
follows. Suppose that by instant t we have numbered k of them; P,, . . . 1 Ph.. 
We assign the number k + 1 to that one of the remaining n - k pursuers, with 

whom the k+l -st encounter first occurs (if there are several of them, we select one 
of them arbitrarily). The instant of the k -th encounter with Ph. is denoted t!; , 
The number 6, is selected such that when 2 = 0 point E is located outside the 
interior of the Qb -neighborhood of each pursuer. Note that under such a numbering 
numbers may not be assigned at all to certain pursuers. 

We pass on to describe the strategy of player E . To do this we construct a system 
M (t) of Q -shaped sets: M,(t), * - . , Ma(t) (Q, where a (t) is the num- 
ber of sets &fi at instant t . For brevityM,ctj (t)is denoted Ma (t). The motion of 
player E for t > t, reduces to the application of the escape maneuver relative to 

M,(t) a and, if a) 1, E ‘s goal is to go onto the boundary of set ]M, (t), 
Ma_l (t)] ,while if a = 1 , it is to go onto L . When t < t, point E slides 
along ray L . At the instant t, of first encounter a (tJ = I, Ml (tJ = Qs, 
(PI(&)). When t = t, the quantity a ( tz) = 2, Ml(h) = Gwl (M,(b)), 
M2(t2) = Qbr (P2(t2)). Suppose that by instant t we have constructed a system M 
of Q-shaped sets such that E (t) fFZ all/l, (t). Between switching instants (see below) 
each of the sets M,(t) passes in time At into Mt(t + At) = GA* (M,(t)). Point 

E moves in the escape maneuver mode from McG (t) up to the switching instant 

‘G when either E goes onto the boundary of [MJc (z), i%fa_r(z)l, or r = tk+r, 
where k is the number of pursuers numbered by the instant ‘t - 0. III the first case 

we transform the system M (a - 0) into the system M (7 i- 0) 

a (T + 0) = a (T - 0) - 1 (3.1) 

Ma (T + 0) = IMa (T - 0), Mcel(‘t - O)l 

M~(T + 0) = Mi(T - 0) = GZ_t (M,(t)) 
i = 1, 2,. . ., a (z - 0) - 2 

In the second case we transform the system M (7 - 0) into the system M (1 + 0) 

a (7 + 0) = a (.t - 0) + 1. Ma 6 + 0) = Qa,,, F’r+~ &+A) (3.2) 

M~(+c + 0) = Mi(a - 0) = Gr_t (M,(t)), i = 1,2. . . ., u (T - 0) 

The index a (t) varies from 0 to n, and a (r) = 0 only when t < t,. 
We say that by &&rnt t a union of players Pi, Pi+17 . . ., Pi+j took place if in 

the system of M (t) we can find a set M, (t) containing the attainability domains 

of the polytopes Qa, (I’i(ti)), . . . , Qbi+] (Pi+j (ti+j))* Hence it follows that Play- 
ers Pi, Pi+l, . . ., Pi+i remain united on the whole interval ]t, 00) and, further- 

more, lose their individuality from the view-point of player E and are replaced by 
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set M, (t) (the index S depends on t). Beginning with some instant, a (t) becom- 
es equal to unity, and all the pursuers numbered turn out to be united into one set M, 

(t) . If it happens that .&’ E L and a (t) = 1 on some interval [Z, rr+ll , then 
for t > tk+l player E applies the procedure described to the remaining n - k 
players, counting pursuer Pk+l as the first, Pk+z as the second, etc., forgetting the exist- 
enceof P,, . . ., Pk. The strategy of E, described above, does not, in general, exlude the 
possibility of coincidence of player E ‘s position and that of one of the pursuers. If 
sequence A can be selected such that the number of encounters with each pursuer is 
finite under any actions of the pursuers, then the strategy indicated guarantees E an 
evasion with a succeeding motion along L. 

4. Let us construct sequence 5 . At each instant we separate the systemM (t) 
into two classes, Into the first we place those sets ~~~~) that wholly contain the 
attainability domain Qa, (Pr (&)). Into the second we place the rest. If in accord- 
ance with the strategy from Sect. 3, E skirts the sets of the first class, then the dist- 
ance from E to Pk automatically remains not less than Cjk , We define the quan- 
tity (Pi- (n) equal to the total time, counting from tk+l, spent by E on the man- 
euver of escaping from the sets of the second class, Then on the whole half-open in- 
terval to, oo) the distance from E to Pk will not be less than 6k - @- (n) qo, 
where q. is the largest velocity of the encounter of E with the pursuer’s attainabil- 
ity domain. Note that q. is independent of the pursuer’s number and that as q. we 
can take q. = &am (Q) + e. Therefore, if for some positive integer R (k) we 
have Eil, - pk- tn) go > b(k), then the number of encounters of E with PI, does 
not exceed R (k). C~e~~tly, in order that the number of encounters of E with 
each pursuer be finite, it is sufficient that for each k, 1 Q k < n - 1 , we find 
a positive integer R (k), R (k) > k, such that the inequality 

61, - qk- @> !?o > 6Wk)* i\<k<n--i (4.1) 

is fulfilled. 
The C&iaI’Itity t&-(m) is made up of a finite number of time intervals and depends 

both on the order of union of the pursuers as well as on the instants at which union takes 
place. In what follows we shall operate with the quantity g)k (n), being the upper 
bound of q&-(n) and depending only on the order of the union, i, e., on the valu- 
es a (ti) and on A. The bound on r@l, (n) is obtained from q&-(n) by making 
three things more coarse. First, the time of E’ ‘s motion along the part of the traj- 
ectory of the maneuver of escaping from every Q-shaped set with largest side d is 
replaced by cod (see (2.3)). Second, if point E went onto a [M, (t), M+,(t)] 
at instant t , then in subsequent estimates [M,(t), Mu.+(t)] is replaced by 

QytMd>>, where y = diam (Ma(t)). Third, we make use of the relation d 
(9 + A@) = d (@) + qA28 to compute the largest side d(8) of set G&l) . 

We define a astir &(a) as equal to ~~(~) if the condition 

a (rk+i + 0) = a (tt+, + 0) + 1 for all i, n - k > i > f (4.2) 

is fulfilled, Condition (4.2) signifies that the union of the pursuers takes place in the 
following sequence: at first PI is united with P,, later P, is united with them, 
next P, , etc. The quantity *k(n) is found below (see Lemma 1) as an explicit 
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Next, conditions are established (see Lemma 2) for A, under which 
for all a (t). If these condition are fulfilled, then we can const- 

ruct the required sequence A by replacing inequalities (4.1) by the stronger 

61, - +h.(n) Qo > bR(k), 1 < k < n - i (4.3) 

and solving them relative to 6, . 

Lemma 1. The relation 

u~+(~+~))) , k = 1, . . ., n - I ; a = I i_ cog; w == UC& 

is valid. 

P r 0 0 f. Let z,-, z,-,. . . be the distances between the pursuers at the switching 
instants, counting from tk+l, and let zl, $,. . . be estimates of these distances, der- 
ived by the same method as for (Pk (n). If condition (4.2) is fulfilled, then 

tk+l+ %= &r tk.+.i + zsi-2 + ‘si_l= tk+i+l, i = 2, 0 a .y TV - 1 - k 
I . 

Thus, III @us case Q (.czi+J is an estimate of the time zf6r (z&J of the maneuver 
of escaping from pktiitl (from the union of Pk+itl with Pk+l,S . ., P,,i). From 
the definition of the quantities co, cl, c2, c follows 

Tl = $Q+~, ‘zi-2 I= CGk+i, r2i-l = co$&2* ir=2,...,n-k (4.5) 

d Zi-2 = 'lf'jf+I + @('k+s+. . . i- 8&+if+ 'flQfZ1+ * I * +z2i_2)) 

where 06,+$ is an estimate of diem fGZ2i_D fQdZtf Va+g ($&II) and dzi_s is an 
estimate of the largest side of M,(f) at the instant t = tk+I + z,- + . . . + t&. 
Taking this into account, we can extract expression (4.4) for $g (n) from the recurr- 
ence relations (4.5). 

The inequality 

~&&> 2Cfk(k “t i) + $k+jbh 2 < i < ?‘& - Ic - 1 (4,s) 

holds, The validity of (4.6) can be established by direct verification, making use of 
formula (4.4) of the fact that a > 1 and that A is a decreasing sequence, 

L e m m a 2. we can select A such that 

%‘k@) > %&) (4.7) 

under any actions of the pursuers. 
The proof is by induction on n - k. For n - k equal to one or two, inequal- 

ity (4.7) can be verified directly for any sequence A. Assume that the lemma is 
valid for n - k < f - I and prove it for n - k = J. We consider two cases. 
At first we assume that we can find i, 1 < i < f, such that 

a &i+f + 0) = a (&Ml f 0) (4*8) 

l-his signifies that & has been united With Pk+i-l and, therefore, (Pk fn) Can be 

expanded into the sum Q)~ (n) = rpr(k -f- i - 1) i- %W-l (n). The induction 

hypothesis is valid for each summand; consequently, with due regard to (4.6) 
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dn) < ‘h(k + i - 1) + $k+i-l (n) < $k(n) 
Inequality (4. ‘7) is valid for all A under assumption (4.8). 

We go on to consider the other, more complicated case when 

CC (tk+i + 0) > CL (&+I + 0), i = 2, . . . , n - k 

a @k+j + 0) > a (tk+l + 0) + 1, 3, 2 < j d 

The index j can always be chosen such that 

n -k 

a ttk+i + 0) = a (tk+j-1 $- 0) + 1, cz (fk+j f 0) > cz (tk+j+l + 0) (4.9) 

a(tk+i-i-O)= a(tk+l+o)+‘& i=l,2,..., j--1 

The first inequality in (4.9) signifies that not even one union took place on the interval 

(tfi+j_l, i!k+j) . The second inequality St&S that Pk+j and Pk+j-1 Were united on 

the interval (tk+jc tk+f+l) . 

We introduce into consideration a fictitious auxiliary game (whose elements are 

distinguished by primes) with n - 1 pursuers, and a sequence A’ 

6. i = 1, . . ., k + 1, . . ., k + j - 2 

6 = (ik+j-1 + dk+j) a + dk+j-1 + abk+j, i=k+j-1 
6. a+19 i=k+j+l, . . ..n-1 

III the auxiliary game player E’ applies the strategy from Sect. 3 to players Pi’ ; 
suppose that the latter act such that systems M (t) and M’ (t) coincide when t < 

tk+j_l and that the relations 

a’ (ti’ + 0) = CC (ti+l + 0); i = k + j, . . ..n- 1 

are fulfilled, when t > tk+j-1 . It can be proved that the important inequality 

(Pk’ tn - 1) > (Pk (n) (4.10) 

is fulfilled. But the induction hypothesis is applicable to the auxiliary game; there- 
fore, from (4.10) follows qk’ (n - 1) > (Pk (n). To complete the proof it re- 

mains to find A such that qk’ (n - 1) < gk (ti) when n - k > 3. But for this 
it is enough to require 

hk+l / 6k+B > g’ (k + 1, n) 

g’ (k + 1, n) = am1 (1 + o (a + l)(a”-k-” - l)(a - l)-la’+*-“) 

For the fulfilment of inequalities (4.3) it is Pifficient to set 

61, 1 6k+1 > g” (k, n), k = 1, . . . , n - 1 (4.11) 

g” tky n, = 1 + '??o (1 Jr & ((& + 2) (a+k - a) _ 

o (n - k - 1))) 

Therefore, if 

6k / 6k+i > g (k, n), k = 2, . . . , n - 1 (4.12) 
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%!?(I, 4 = ff(l,n); g(n - 1, n) = g” (n - 1, n) = I + cqo 

g 6% 4 = max (g’ Vc, n), g” (k, n)), k = 2, 3, . . . , n - 2 

then relation (4.1) and (4.3) are valid simultaneously. Moreover, (4.11) ensures the 
fulfilment of (4.3) with R (k) = k + 1, i. e., 

61, - q~k (n) q. > t~k.+~; k = 1. . . . , n - 1, n (4.13) 

but this signifies that the numbering of the pursuers is not changed if we assign number 
k to that one of them with whom the k -th encounter first took place, From (4.13) 
it follows as well that the estimate 

The quantities g (k, n) 
60 > 6, is valid for the minimum distance 6, . 

in formulas (4.12) depend on Q, e and n - k. 
As an example let us derive the values of the parameters in these formulas, when 

Q is a square with unity side and with center of symmetry at zero. In this case 

q = 1, qo = 1 + E, cg = a - 1, Cl = 2, c2 = 2 

c = 2 (a - I), a = (1 + E-1)4, 0 = 4a 

Let us estimate the time 2’ passed by point E outside L. At first we consider the 
case when the trajectory of E does not contain segments of ray L on which a (t) 
= 1. We define an auxiliary game with n + 1 pursuers (its elements are distinguish- 

ed by double primes) such that 8,” == 6,g (I, n. $ I), a;+, = IS,, i = 1, 2,. . ., n. 
Thus, the A” defined satisfies (4.12) and, therefore, inequality (4.13) is valid, i. e., 

6,” - q& (n + 1) 2 6”,. Consequently, 

*I (n + 1) d (S,# - ozn) / Qo = 6, (&? (1, n + 1) - 1) qo-’ 

But T does not exceed I#~ (n f I), therefore 

T < 6, (g (I, n + 1) - 1) i PO 
(4.14) 

If E ‘s trajectory contains N segments of L on which a = 1, then T can 
be represented as the sum T = Tl f T, $ . . . f TN, where TicI is the value of 

T between the i -th and the ( i i- 1 ) st segments. An estimate of type (4.14) is 

valid for each Ti . We see that it remains valid for their sum. Let us estimate the 
distance p (t) between E and the point accomplishing a nominal motion. We can 

be convinced that 

p (t) < qoT < 6, (6 (1, n + 1) - 1) 

g (1, n -I- 1) = 1 + cq, 1 + & ((5 + 2) (a”- a) - 0 (n - 1) 
ii 

Thus, if we select 6, < &o / (g (1, n $ 1) - I), then point E remains in the 

so -neighborhood of the nominal motion. 
We note that every system of differential equations y’ = A (t) y + B (t) v, 

UE Vo, where A (t) and B (t) are matrices of appropriate dimensions, can be 

brought to the form E’ = v, v (t) E V (t). Here E is a complete collection of in- 

dependent first integrals of the system y’ = A (t) y, while the set of admissible con- 
trols V (t) depends upon V, and on matrices A (t) and B (t). It can be shown 

that all the results remain in force for Eqs. (1.1) in which sets Ui and V are time- 
dependent, if the imbedding 
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t>o 
UUi(t)Cint /IV(t); i=l,...,n 
t>o 

are called for instead of (1.2). 

The author thanks F. L. Chernous’ko for posing the problem and for attention to 

the work. 
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